E nantioselective Total Syntheses of (-)-7 $\beta \mathrm{H}-E$ udesmane-4 $\alpha, 11$-diol and (+)-ent-7 $\beta \mathrm{H}$-E udesmane-4 $\alpha, 11$-diol

Fumito Shimoma, ${ }^{\dagger}$ Hisao K ondo, Saori Yuuya, ${ }^{\dagger}$ Toshio Suzuki, ${ }^{\dagger}$ Hisahiro Hagiwara, ${ }^{\dagger}$ and Masayoshi Ando*
Department of Applied Chemistry, Faculty of Engineering, Niigata University, I karashi 2-8050, Niigata, 950-21, J apan, and Graduate School of Science and Technol ogy, Niigata University, I karashi 2-8050, Niigata 950-21, J apan

Received J une 12, $1997{ }^{*}$
The syntheses of (-)-7 $\beta \mathrm{H}$-eudesmane-4 $\alpha, 11$-diol (2) and (+)-ent-7 $\beta \mathrm{H}$-eudesmane-4 $\alpha, 11$-diol (ent2) were carried out starting from (-)- and (+)-dihydrocarvones. As a result, the structure, including absolute configuration, of the naturally occurring eudesmane-4,11-diol isolated from Pluchea arguta was determined to be (+)-ent-7 $\beta \mathrm{H}$-eudesmane-4 α,11-diol (ent-2).

Recently, a new eudesmane-4,11-diol, the so-called 4,5-epi-cryptomeridiol, was isolated from a Pakistani medicinal plant, Pluchea arguta Boiss. (Asteraceae) by Ahmad et al., ${ }^{1}$ and the structure was proposed as $5 \beta \mathrm{H}$ -eudesmane-4 β,11-diol (1) (Figure 1). Two years later, we attempted the synthesis of 1 to confirm the structure of the natural eudesmane-4,11-diol. ${ }^{2}$ Because the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra, as well as the physical constants, of our synthetic 1 were different from those of the natural eudesmane-4,11-diol, we concluded that the structure of the natural product assigned as $\mathbf{1}$ must be erroneous. We reexamined the structure of this natural product based on ${ }^{13} \mathrm{C}-\mathrm{NMR}$ shielding data as well as the synthesis of model compounds, and revised the structure from 1 to 7β H-eudesmane-4 α,11-diol (2), except for the absolute configuration. ${ }^{2}$

Here we report the results of the syntheses of $\mathbf{2}$ and ent-2 by stereochemi cally defined procedures to obtain the unambiguous structure of the natural eudesmane-4,11-diol isolated by Ahmad et al., ${ }^{1}$ including its absolute configuration.

Results and Discussion

In the first synthetic plan for $\mathbf{2}$, the reduction of $7 \beta \mathrm{H}$ -eudesmane-3 $\alpha, 4 \alpha ; 11 \xi$,12-diepoxide (12) was envisioned as the final step. The starting material was $7 \beta \mathrm{H}$ -eudesma-4,11-dien-3-one (4), which was conveniently prepared via condensation of (-)-dihydrocarvone with ethyl vinyl ketone and dehydration of the resulting ketol $3^{3,4}$ (Scheme 1). Birch reduction of $4,{ }^{4}$ using EtOH as the proton donor gave $7 \beta \mathrm{H}$-eudesm-11-en-3-one (5) in 61\% yield.

Reduction of 5 with NaBH_{4} in a mixture of MeOH and ether gave the α - and β-alcohols 6 and 7 in 19\% and 78% yields, respectively. Mesylation of 6 with methanesulfonyl chloride and pyridine and successive treatment of the resulting mesylate $\mathbf{8}$ with a mixture of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and LiBr in DMF at $150{ }^{\circ} \mathrm{C}$ gave an inseparable 10:1 mixture of $7 \beta \mathrm{H}$-eudesma-3,11-diene (10) and $7 \beta \mathrm{H}$-eudesma-2,11-diene (11) in 77\% overall yield. ${ }^{5}$ By analogy, mesylation of 7 and successive treatment of the

[^0]
$5 \beta \mathrm{H}$-Eudesmane-4 β,11-diol (1)
(Ahmad's ${ }^{1}$ Structure)
Figure 1.

Figure 2.
resulting mesylate 9 under the same reaction conditions mentioned above gave an $8: 1$ mixture of $\mathbf{1 0}$ and $\mathbf{1 1}$ in 86% overall yield. It is noteworthy that both the $3 \alpha-$ alcohol 6 and 3β-al cohol 7 gave the same 3,11-diene (10), as a major product. ${ }^{6}$

Epoxidation of $\mathbf{1 0}$ with 2 molar equivalents of mCPBA gave $7 \beta \mathrm{H}$-eudesmane- $3 \alpha, 4 \alpha ; 11 \xi, 12$-diepoxide (12) as a 3:2 diastereomeric mixture at C-11 in 80% yield. Reduction of $\mathbf{1 2}$ with LiAlH_{4} in ether at room temperature gave $7 \beta \mathrm{H}-3 \alpha, 4 \alpha$-epoxyeudesman-11-ol (13) in quantitative yield (Figure 2). Further treatment of 13 with a large excess of LiAlH_{4} for 43 h gave the undesired diols 14 and 15 in 6\% and 23\% yields, respectively. Unfortunately, the target molecule, $7 \beta \mathrm{H}$-eudesmane4α,11-diol (2) could not be detected, probably because $\mathbf{2}$ is the stereoelectronically unfavorable reaction product (path c). The formation of $\mathbf{1 5}$ is explained by the stereoelectronically favorable, but sterically hindered, β-axial attack of hydride toward the $3 \alpha, 4 \alpha$-epoxide at C-4 (path a). The formation of minor 3β-alcohol 14 may

Scheme 1

be explained by rearrangement of epoxide $\mathbf{1 3}$ and successive reduction of the resulting ketone (path b).
The second plan for the synthesis of $\mathbf{2}$ was based on the reduction of 3α-(mesyloxy)-11 $\xi, 12$-epoxyeudesman$4 \alpha-\mathrm{ol}$ (22) in the final step. Epoxidation of $\mathbf{1 0}$ with 1 molar equivalent of m-CPBA gave the $3 \alpha, 4 \alpha$-monoepoxide $\mathbf{1 6}$ and $3 \alpha, 4 \alpha ; 11 \xi, 12$-diepoxide $\mathbf{1 2}$ in 78% and 13% yields, respectively. Treatment of $\mathbf{1 6}$ with $\mathrm{Al}(\mathrm{i}-\mathrm{PrO})_{3}$ in boiling toluene gave the desired allylic al cohol 17 in 71% yield, accompanied by the rearranged product 18 in 15% yield. Sharpless oxidation ${ }^{7}$ of $\mathbf{1 7}$ with tert-butyl hydroperoxide (TBHP) in benzene, in the presence of vanadyl acetylacetonate [$\mathrm{VO}(\mathrm{acac})_{2}$], gave $7 \beta \mathrm{H}-4 \alpha, 14$-epoxy-eudesman-3 α-ol (19) in 78% yield. Reduction of 19 with LiAlH_{4} in ether gave the $3 \alpha, 4 \alpha$-diol 20 in 95% yield (Figure 3). Mesylation of $\mathbf{2 0}$ and successive epoxidation of the resulting mesylate $\mathbf{2 1}$ with m-CPBA gave the desired $\mathbf{2 2}$ in 49\% yield. The attempted synthesis of 7β H-eudesmane-4 α,11-diol (2) by the reductive elimination of the C-3 mesyloxy group of $\mathbf{2 2}$ was unsuccessful. Reduction of $\mathbf{2 2}$ with LiAlH_{4} gave a rearranged product $\mathbf{2 3}$ (40% yield). The formation of $\mathbf{2 3}$ may be reasonably explained by migration of the methyl group from C-4 to C-3 and successive reduction of the resulting ketone.

Finally, we succeeded in the synthesis of $7 \beta \mathrm{H}$-eudes-mane-4 $\alpha, 11$-diol (2) by the method shown in Scheme 1. Thus, further epoxidation of $\mathbf{1 9}$ with m-CPBA in CHCl_{3} gave the diepoxide $\mathbf{2 4}$ in 95% yield. Reduction with LiAlH_{4} in ether gave $7 \beta \mathrm{H}$-eudesmane- $3 \alpha, 4 \alpha, 11$-triol (25)
in $\mathbf{9 7 \%}$ yield. Mesylation of $\mathbf{2 5}$ with mesyl chloride in pyridine gave $7 \beta \mathrm{H}-3 \alpha$-mesyloxyeudesmane- $4 \alpha, 11$-diol (26) in 74% yield. Treatment of $\mathbf{2 6}$ with $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and LiBr in DMF at $140^{\circ} \mathrm{C}$ for 3 h gave $7 \beta \mathrm{H}$-eudesm-2-ene$4 \alpha, 11$-diol (27) in 59% yield. Catalytic hydrogenation of $\mathbf{2 7}$ in the presence of $3 \% \mathrm{Pd}-\mathrm{SrCO}_{3}$ in EtOAc gave $7 \beta \mathrm{H}$-eudesmane-4 4,11 -diol (2) in quantitative yield. The ${ }^{1} \mathrm{H}-$ NMR and ${ }^{13} \mathrm{C}$-NMR spectral data of $\mathbf{2}$ were in good agreement with those of natural eudesmane-4,11-diol. ${ }^{1}$ The $[\alpha]_{D}$ value of $\mathbf{2}$ was identical with that of the natural product ${ }^{1}$ in absolute value at the same concentration, but the sign was opposite.

Attention then focused on the synthesis of ent-2. The starting material, ent- $7 \beta \mathrm{H}$-eudesma-4,11-dien-3-one (ent4), ${ }^{8,9}$ was efficiently prepared via condensation of (+)dihydrocarvone with ethyl vinyl ketone and dehydration of the resulting ketol ent-3. ${ }^{8}$ The target molecule, ent$7 \beta \mathrm{H}$-eudesmane-4 α,11-diol (ent-2), was synthesized from ent-4 in 12 steps in 15.1% overall yield by the anal ogous procedure employed in the synthesis of $\mathbf{2}$ (see Scheme 1). The melting point and [$\alpha]_{D}$ value of synthetic ent-2 were in good agreement with those of the natural eudesmane-4,11-diol. ${ }^{1}$ The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of ent-2 were identical with those of $\mathbf{2}$ at the same concentration.

In conclusion, the structure of the natural eudesmane-4,11-diol isolated from the Pakistani medicinal plant Pluchea arguta ${ }^{1}$ was established unambiguously to be

Figure 3.
ent-7 $\beta \mathrm{H}$-eudesmane-4 α,11-diol (ent-2) by synthesis as mentioned above.

Experimental Section

General Experimental Procedures. All melting points are uncorrected. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Varian Gemini-200 spectrometer at 200 MHz and at 50 MHz , respectively, using CDCl_{3} as solvent unless otherwise stated. The assignments of ${ }^{1} \mathrm{H}$ NMR spectra were determined by decoupling and $\mathrm{H}-\mathrm{H}$ COSY experiments. The assignments of ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were determined by DEPT and C-H COSY experiments. EIMS, GCEIMS, and HREIMS were recorded on a J EOL-HX 110 instrument. Optical rotations were determined on a Horiba SEPA-200 polarimeter. All reactions were run under an atmosphere of N_{2} or Ar. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium benzophenone ketyl. CHCl_{3} was dried over CaCl_{2} and distilled. Benzene and toluene were dried over CaCl_{2}, distilled, and stored in a bottle with Na wire equipped with mercury seal. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMF, and pyridine were distilled from CaH_{2}. MeOH and EtOH were distilled from $\mathrm{Mg}(\mathrm{OMe})_{2}$ and $\mathrm{Mg}(\mathrm{OEt})_{2}$, respectively. To describe HPLC conditions, the column, solvent, flow rate ($\mathrm{mL} /$ min), and retention time (t_{R} in min) are designated in order. The col umn codes are as follows: A, $250 \times 4 \mathrm{~mm}$ i.d. stainless column packed with $10 \mu \mathrm{~m}$ Si gel; B, 250 $\times 8 \mathrm{~mm}$ i.d. stainless column packed with $10 \mu \mathrm{~m}$ Si gel; C, $250 \times 4.6 \mathrm{~mm}$ i.d. stainless column packed with 10 $\mu \mathrm{m}$ Si gel.
$7 \beta \mathrm{H}$-5 β-Hydroxyeudesm-11-en-3-one (3). Compound $\mathbf{3}$ was prepared by the modified method reported in the literature 3,4 as colorless crystals: mp $101{ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{D}-44.0^{\circ}\left(c 3.74, \mathrm{CHCl}_{3}\right)$; anal. C $75.80 \%, \mathrm{H} 10.15 \%$, calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$, C 76.22\%, H 10.24\%.
$\mathbf{7} \beta \mathbf{H}$-E udesma-4,11-dien-3-one (4). Compound 4 was prepared by the method reported in the literature ${ }^{4}$ as a colorless oil in 82% yield: $[\alpha]^{20}$ D $+177.1^{\circ}$ (c 3.20, CHCl_{3}); HREIMS m/z 218.1662 (calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}$ 218.1671).
$7 \beta \mathrm{H}$-E udesm-11-en-3-one (5). I nto a stirred solution of liquid $\mathrm{NH}_{3}(154 \mathrm{~mL})$ and $\mathrm{Li}(216 \mathrm{mg}, 31.1 \mathrm{mmol})$ was added 4 ($617 \mathrm{mg}, 2.83 \mathrm{mmol}$) dissolved in a mixture of $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and THF (14 mL) under stirring at -65 ${ }^{\circ} \mathrm{C}$. After stirring was continued for 20 min at this temperature, EtOH (1.4 mL) was added. The reaction mixture was allowed to stand at room temperature overnight, poured into a saturated aqueous solution of $\mathrm{NaCl}(25 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$.

The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give an oily crude product that was purified by column chromatography [Si gel 44 g , EtOAc-hexane (2:8)] to give 5 ($380 \mathrm{mg}, 61 \%$) as colorless plates: mp $37{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}+12.2^{\circ}\left(\mathrm{c} 3.61, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }}$ 3096, 1700, 1640, $896 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 1.00(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, \mathrm{H}-14), 1.13$ (3H, s, H-15), 1.71 (3H, s, H-12), 2.17 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=12.1,6.5 \mathrm{~Hz}, \mathrm{H}-4$), 2.31 (1 H, ddd, J $=15.0$, $5.1,2.4 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{eq}), 2.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=12.0 \mathrm{~Hz}, \mathrm{H}-7\right)$, $2.51(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=15.0,15.0,6.6 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{ax}), 4.77(1 \mathrm{H}$, br m, H-13a), 4.90 (1H, m, H-13b); ${ }^{13} \mathrm{C}$ NMR $\delta 11.14$ (q, C-14), 16.05 ($q, C-15$), 22.65 ($q, C-12$), 22.97 (t, C-8), 27.49 ($\mathrm{t}, \mathrm{C}-6$), 33.94 (s, C-10), 36.28 (t, C-9), 38.15 (t , C-2), 38.28 (d, C-7), 41.69 (t, C-1), 45.19 (d, C-4), 45.61 (d, C-5), 110.99 (t, C-13), 146.22 (s, C-11), 213.15 (s, C-3); anal. C $81.47 \%, \mathrm{H} 11.03 \%$, calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}, \mathrm{C} 81.76 \%$, H 10.98\%.
$7 \beta \mathrm{H}-\mathrm{E}$ udesm-11-en- 3α-ol (6) and $7 \beta \mathrm{H}-\mathrm{E}$ udesm-11-en-3 β-ol (7). To a stirred solution of 5 ($56 \mathrm{mg}, 0.26$ mmol) in a mixture of $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and $\mathrm{MeOH}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(29 \mathrm{mg}, 0.76 \mathrm{mmol})$. The solution was stirred for 3 h at room temperature, poured into a saturated aqueous solution of $\mathrm{NaCl}(30 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined extracts were worked up as usual to give an oily crude product (63 mg) that was separated by HPLC [B, EtOAc-hexane (1:9), $6.2 \mathrm{~mL} / \mathrm{min}$]. The first peak (t_{R} 4.8 min) gave 6 ($11 \mathrm{mg}, 19 \%$) as a colorless viscous oil: $[\alpha]^{20} \mathrm{D}-16.3^{\circ}\left(\mathrm{c} 1.12, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max } 3416,1642$, $890 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.89$ (3H, s, H-15), 0.93 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=6.3 \mathrm{~Hz}, \mathrm{H}-14), 1.73(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 2.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=\right.$ $10.0 \mathrm{~Hz}, \mathrm{H}-7), 3.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=6.0 \mathrm{~Hz}, \mathrm{H}-3\right), 4.83$ (1H, m, H-13a), 4.90 (1H, m, H-13b); ${ }^{13}$ C NMR $\delta 15.76$ (q), 15.85 (q), 22.81 (q, C-12), 23.28 (t), 25.90 (t), 29.01 (t), 34.04 (s, C-10), 35.27 (t), 35.50 (d), 37.23 (t$), 37.62$ (d), 39.17 (d, C-7), 72.29 (d, C-3), 110.77 (t, C-13), 146.95 (s, C-11); HREIMS m/z 222.2019 (calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$ 222.1984).

The second peak ($\mathrm{t}_{\mathrm{R}} 8.0 \mathrm{~min}$) gave 7 ($44 \mathrm{mg}, 78 \%$) as colorless micro crystals: mp $72^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+19.7^{\circ}$ (c 2.59, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3620,3472,3096,1640,896$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.90(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 0.97(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2$ $\mathrm{Hz}, \mathrm{H}-14), 1.73(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 2.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=10.0\right.$ $\mathrm{Hz}, \mathrm{H}-7$), 3.10 (1 H , ddd, J $=11.0,9.5,5.1 \mathrm{~Hz}, \mathrm{H}-3$), 4.80 (1H, m, H-13a), 4.90 (1H, m, H-13b); ${ }^{13} \mathrm{C}$ NMR $\delta 14.83$ (q, C-14), 16.63 (q, C-15), 22.77 (q, C-12), 23.04 (t), 26.01 (t), 30.87 (t), 33.71 (s, C-10), 37.06 (t), 38.84 (d, C-7), 39.13 (d), 39.89 (t), 43.17 (d), 76.77 (d, C-3), 110.61 (t, C-13), 147.03 (s, C-11); anal. C 79.95\%, H 11.65\%, calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}, \mathrm{C} 81.02 \%$, $\mathrm{H} 11.79 \%$.

7 $\mathbf{\beta H}$-E udesm-11-en- $\mathbf{~} \alpha$-ol Methanesulfonate (8). A mixture of $6(102 \mathrm{mg}, 0.46 \mathrm{mmol})$ and methanesulfonyl chloride ($71 \mu \mathrm{~L}, 0.92 \mathrm{mmol}$) in pyridine (8 mL) was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then at $23^{\circ} \mathrm{C}$ for 9 h . The reaction mixture was worked up as usual to give 8 (130 $\mathrm{mg}, 94 \%$) as a viscous oil: IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 3096,1642$, $1334,1170 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.90(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 0.97(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-14), 1.73(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 2.36(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{W}_{\mathrm{h} / 2}=11.0 \mathrm{~Hz}, \mathrm{H}-7\right), 3.01\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OSO}_{2} \mathrm{Me}\right), 4.81(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=5.0 \mathrm{~Hz}, \mathrm{H}-3\right), 4.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a}), 4.92(1 \mathrm{H}$, m, H-13b).
$\mathbf{7 \beta H}$-E udesm-11-en-3 β-ol Methanesulfonate (9). The methanesulfonate 9 was prepared as a viscous oil ($235 \mathrm{mg}, 98 \%$) by the analogous method mentioned
above: IR (neat) $v_{\text {max }} 3096,1642,1354,1176 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.92$ (3H, s, H-15), 0.99 (3H, d, J = 6.4, H-14), $1.72(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 2.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=11.0 \mathrm{~Hz}, \mathrm{H}-7\right)$, $3.01\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OSO}_{2} \mathrm{Me}\right), 4.23(1 \mathrm{H}$, ddd, $\mathrm{J}=10.8,10.8$, $5.2 \mathrm{~Hz}, \mathrm{H}-3), 4.78$ (1H, m, H-13a), 4.91 (1H, m, H-13b).
$\mathbf{7} \boldsymbol{\beta} \mathbf{H}-E$ udesma-3,11-diene (10) from 8. A mixture of $8(50 \mathrm{mg}, 0.17 \mathrm{mmol}), \operatorname{LiBr}(29 \mathrm{mg}, 0.33 \mathrm{mmol})$, and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ ($37 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (5 mL) was stirred at $150{ }^{\circ} \mathrm{C}$ (bath temperature) for 1 h , cooled, and filtered under reduced pressure. The filtrate was poured into a saturated aqueous solution of $\mathrm{NaCl}(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined extracts were worked up as usual to give a pale yellow oil (39 mg) that was purified by column chromatography (column 1.4 cm i.d., Si gel; 2.0 g , solvent hexane) to give a 10:1 mixture of $\mathbf{1 0}$ and $\mathbf{1 1}$ ($\mathbf{2 8} \mathrm{mg}, \mathbf{8 2 \%}$) as a viscous oil. The ratio of $\mathbf{1 0}$ and $\mathbf{1 1}$ was determined by the analysis of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the mixture: IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }}$ of the mixture 3096, 1642, $892 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR spectrum of the major component $10 \delta 0.85(3 \mathrm{H}$, s, H-15), 1.62 (3H, s, H-14), 1.76 (3H, s, H-12), 2.41 (1 H , $\mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=13.0 \mathrm{~Hz}, \mathrm{H}-7$), 4.86 (1H, m, H-13a), 4.92 (1H, $\mathrm{m}, \mathrm{H}-13 \mathrm{~b}), 5.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=13.0 \mathrm{~Hz}, \mathrm{H}-3\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of the major component $10 \delta 15.52$ (q, C-15), 21.17 ($q, C-14$), 22.85 ($q, C-12$), 22.85 (t), 23.41 (t), 25.29 (t), 32.84 (s, C-10), 36.10 (t), 38.25 (t), 39.45 (d, C-7), 41.20 (d, C-5), 110.76 (t, C-13), 121.16 (d, C-3), 135.16 (s, C-4), 147.08 (s, C-11); GCEIMS of the major component 10 m/z 204 [M] (50), 189 (14), 161 (100), 122 (60), 107 (19); HREIMS m/z 204.1882 (calcd for $\mathrm{C}_{15} \mathrm{H}_{24}$ 204.1878).
$\mathbf{7 \beta H}-E$ udesma-3,11-diene (10) from 9. The methanesulfonate 9 ($30 \mathrm{mg}, 0.10 \mathrm{mmol}$) was treated in the same way as described in the preparation of $\mathbf{1 0}$ from 8 to give an 8:1 mixture of $\mathbf{1 0}$ and 11 ($18 \mathrm{mg}, 88 \%$) as a viscous oil.

7 $\beta \mathrm{H}$-E udesm-11-en-3 $\alpha, 4 \alpha$-epoxide (16). A solution of $\mathbf{1 0}(50 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ and 87% m-CPBA ($48 \mathrm{mg}, 0.25 \mathrm{mmol}$) was allowed to stand at 0 ${ }^{\circ} \mathrm{C}$ for 30 min . The mixture was poured into a mixture of 0.1 M aqueous solution of $\mathrm{KI}(15 \mathrm{~mL})$ and a saturated aqueous solution of $\mathrm{NaCl}(30 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$. The combined extracts were washed successively with 0.1 M aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \times 20 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, and a saturated aqueous solution of $\mathrm{NaCl}(2 \times 20 \mathrm{~mL})$; dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$; and concentrated to give a crude product (60 mg). This was then separated by the combination of column chromatography [Si gel $3.0 \mathrm{~g}, 1.4 \mathrm{~cm}$ i.d. column, EtOAc-hexane (1: 9)] and HPLC [A, EtOAc-hexane (1:9), $3.1 \mathrm{~mL} / \mathrm{min}]$.

The first peak ($\mathrm{t}_{\mathrm{R}} 1.8 \mathrm{~min}$) gave 16 ($42 \mathrm{mg}, 78 \%$) as a colorless oil: $[\alpha]^{20}{ }_{D}+20.7^{\circ}\left(c 1.87, \mathrm{CHCl}_{3}\right)$; IR (neat) $\nu_{\max }$ 1642, 1384, $888 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.84$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$), 1.23 (3H, s, H-14), 1.75 (3H, s, H-12), $2.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=\right.$ $\left.11.0 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}\right), 2.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=5.0 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 4.84$ (1H, s, H-13a), 4.91 (1H, m, H-13b); ${ }^{13} \mathrm{C}$ NMR $\delta 16.01$ (q, C-15), 21.02 (q, C-14), 21.39 (t), 22.81 (q, C-12), 23.15 (t), 25.79 (t), 31.82 (s, C-10), 34.89 (t$), 35.24$ (t$), 39.22$ (d, C-7), 41.97 (d, C-5), 58.73 (s, C-4), 60.88 (d, C-3), 111.15 (t, C-13), 146.04 (s, C-11); EIMS m/z 220 [M] ${ }^{+}$ (32), 205 (100), 177 (12), 161 (47), 138 (13), 122 (27), 107 (16); HREIMS m/z 220.1822 (calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$ 220.1827).

The second peak ($t_{R} 5.8 \mathrm{~min}$) gave 12 as a colorless oil ($7.2 \mathrm{mg}, 13 \%$): IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 1385 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.82$ (3H, s, H-15), 1.23 (3H, s, H-14), 1.37 (3H, s, $\mathrm{H}-12), 2.52$ ($0.4 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 2.55(0.6 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 2.79(0.4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b})$, $2.82(0.6 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b}), 2.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=\right.$ $5.0 \mathrm{~Hz}, \mathrm{H}-3)$; EIMS m/z 236 [M] ${ }^{+}$(6), 221 (24), 205 (100), 177 (27), 161 (44), 122 (22), 107 (15); HREIMS m/z 236.1776 (calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}, 236.1776$).
$\mathbf{7} \beta \mathrm{H}-E$ udesma-4(14),11-dien-3 α-ol (17). A solution of 16 ($94 \mathrm{mg}, 0.43 \mathrm{mmol}$) in toluene (12 mL) was refluxed under stirring with aluminum isopropoxide ($890 \mathrm{mg}, 4.36 \mathrm{mmol}$) for 3 h . The solution was concentrated under reduced pressure. The residue was poured into a cold mixture of EtOAc (10 mL), 2 M aqueous solution of $\mathrm{HCl}(2 \mathrm{~mL})$, and a saturated aqueous solution of $\mathrm{NaCl}(15 \mathrm{~mL})$, stirred for 30 min , and filtered through Celite. The organic layer was separated, and the aqueous layer was further extracted with EtOAc ($3 \times$ 15 mL). The combined organic layers were washed with a saturated aqueous solution of $\mathrm{NaCl}(2 \times 15 \mathrm{~mL})$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated to give an oily crude product (108 mg) that was purified by HPLC [B, EtOAc-hexane (5:95), $6.2 \mathrm{~mL} / \mathrm{min}]$.

The first peak ($t_{R} 8.2 \mathrm{~min}$) gave 18 ($14 \mathrm{mg}, 15 \%$) as col orless needles: $\mathrm{mp} 43^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-0.4^{\circ}\left(\mathrm{c} 1.13, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3640,3484,3096,1642,892 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.92(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 1.22(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=12.5,3.0 \mathrm{~Hz}, \mathrm{H}-5), 1.73(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 2.40(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=12.0 \mathrm{~Hz}, \mathrm{H}-7\right), 3.27\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2} \mathrm{OH}\right), 4.83$ (1H, m, H-13a), 4.89 (1H, m, H-13b); ${ }^{13}$ C NMR $\delta 18.58$ (q, C-15), 20.92 (q, C-14), 22.95 (q, C-12), 23.88 (t), 24.36 $(\mathrm{t}), 34.34(\mathrm{t}), 37.77$ (t), $39.38(\mathrm{~d}, \mathrm{C}-7), 40.34(\mathrm{t}), 42.59$ (s), 42.90 (s), 46.97 ($\mathrm{d}, \mathrm{C}-5$), 72.95 (t, C-3), 110.50 (t , C-13), 147.59 (s, C-11); anal. C 80.37\%, H 12.04\%, calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}, \mathrm{C} 81.02 \%, \mathrm{H} 11.79 \%$.

The second peak ($\mathrm{t}_{\mathrm{R}} 9.6 \mathrm{~min}$) gave 17 ($67 \mathrm{mg}, 71 \%$) as a colorless oil: $[\alpha]^{20}{ }_{D}+8.4^{\circ}$ (c 1.26, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3616,3460,3092,1644,906 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.74(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 1.74(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 2.46(2 \mathrm{H}, \mathrm{m}$, H-5, H-7), 4.28 (1H, dd, J = 2.6, $2.6 \mathrm{~Hz}, \mathrm{H}-3$), 4.60 (1 H , dd, J = 1.8, 1.8 Hz, H-14a), 4.83 (1H, br s, H-13a), 4.93 (1H, m, H-13b), 4.93 (1H, m, H-14b); ${ }^{13} \mathrm{C}$ NMR $\delta 15.22$ (q, C-15), 22.88 (q, C-12), 23.27 (t), 25.57 (t$), 29.66$ (t), 35.95 (t), 36.21 (t), 36.33 ($\mathrm{s}, \mathrm{C}-10$), 38.13 (d), 38.86 (d), 73.74 (d, C-3), 108.72 (t, C-14), 110.88 (t, C-13), 146.68 (s, C-11), 152.37 (s, C-4); EIMS m/z $220[\mathrm{M}]^{+}$(7), 202 (77), 187 (39), 177 (22), 159 (100), 145 (38), 107 (22); HREIMS m/z 220.1822 (calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$ 220.1827).
$\mathbf{7} \beta \mathrm{H}-4 \alpha, 14$-E poxyeudesm-11-en- $\mathbf{\alpha} \alpha$-ol (19). A solution of 17 ($120 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}$ (5 mL) containing $\mathrm{VO}(\mathrm{acac})_{2}(7 \mathrm{mg}, 0.03 \mathrm{mmol})$ was treated at room temperature with tert-butyl hydroperoxide (TBHP) (164 $\mu \mathrm{L}, 1.20 \mathrm{mmol})$. After the addition was completed, stirring was continued for additional 18 h at room temperature. The mixture was poured into an aqueous solution of $\mathrm{KI}\left(299 \mathrm{mg}\right.$, in 60 mL of $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined extracts were washed successively with 0.1 M aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 30 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$, and a saturated aqueous solution of $\mathrm{NaCl}(30 \mathrm{~mL})$; dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$; and concentrated to give an oily crude product (127 mg), which was chromatographed over Si gel [6.3 g, 1.8 cm i.d., EtOAc-
hexane (5:95)]. The major fraction gave 19 (101 mg , 78%) as colorless needles: $\mathrm{mp} 77{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-26.0^{\circ}$ (C $\left.0.84, \mathrm{CHCl}_{3}\right)$; IR (CHCl_{3}) $v_{\max } 3604,3504,3096,1642$, $1384,896 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\delta 0.91$ (3H, s, H-15), 1.71 (3 H , s, H-12), 2.29 (1H, dd, J = 13.0, $2.5 \mathrm{~Hz}, \mathrm{H}-5$), 2.37 (1 H , m, H-7), 2.60 (1H, d, J $=4.3 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{a}$), $2.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=4.3 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{~b}), 3.37\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,2.8 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right)$, 4.83 (1H, m, H-13a), 4.93 (1H, m, H-13b); ${ }^{13} \mathrm{C}$ NMR δ 16.24 (q, C-15), 21.10 (t), 22.70 (q, C-12), 23.36 (t), 27.29 (t, C-2), 34.41 (d, C-5), 35.07 (t), 35.94 ($\mathrm{s}, \mathrm{C}-10$), 36.55 (t), 38.48 (d, C-7), 50.33 (t, C-14), 61.95 ($\mathrm{s}, \mathrm{C}-4$), 73.31 (d, C-3), 111.18 (t, C-13), 146.00 (s, C-11); anal. C $74.69 \%, \mathrm{H} 10.10 \%$, calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}, \mathrm{C} 76.22 \%, \mathrm{H}$ 10.24\%.

7 $\beta \mathrm{H}-4 \alpha, 14 ; 11 \xi, 12$-Diepoxyeudesman-3 α-ol (24a and 24b). A solution of 19 ($1.69 \mathrm{~g}, 7.15 \mathrm{mmol}$) and 84% m-CPBA ($2.28 \mathrm{~g}, 11.1 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(7 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Thereaction mixture was worked up as usual manner to give a crude crystalline material (1.92 g), which was chromatographed over Si gel [58 g, 4.3 cm i.d., EtOAc-hexane (2:8)] to give 24 (1.71 g , 95\%) as a 1:1 diastereomeric mixture concerning C-11. This mixture was employed in the following reaction. A part of this mixture was separated by HPLC [B, EtOAchexane (3:7), $6.2 \mathrm{~mL} / \mathrm{min}$].

The first peak ($t_{R} 8.4 \mathrm{~min}$) gave an isomer concerning C-11 (24a) as col orless prisms: $m p 74{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-47.7^{\circ}$ (c, $0.25, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 3604,3500,1386 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.88$ (3H, s, H-15), 1.35 (3H, s, H-12), 1.85 $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.36\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{W}_{\mathrm{h} / 2}=\right.$ $4.8 \mathrm{~Hz},-\mathrm{OH}$), $2.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.4,3.1 \mathrm{~Hz}, \mathrm{H}-5), 2.49$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 2.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.3 \mathrm{~Hz}$, H-14a), 2.76 (1H, d, J $=4.7 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b}), 2.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=4.3 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{~b}), 3.39\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=4.0 \mathrm{~Hz}, \mathrm{H}-3\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 15.93$ ($q, C-15$), 19.79 (t), 21.95 ($q, C-12$), 21.95 (t), 27.31 (t, C-2), 34.94 (t, C-1), 35.11 (d, C-5), 35.29 (s , C-10), 38.86 (d, C-7), 37.53 (t, C-9), 49.92 (t, C-14), 52.55 (t, C-12), 59.09 (s, C-11), 62.12 (s, C-4), 73.20 (d, C-3); anal. C 71.18\%, H 9.45\%, calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}, \mathrm{C} 71.39 \%$, H 9.59\%.

The second peak ($\mathrm{t}_{\mathrm{R}} 9.6 \mathrm{~min}$) gave another isomer concerning at $\mathrm{C}-11$ (24b) as colorless prisms: $\mathrm{mp} 96^{\circ} \mathrm{C}$; $[\alpha]^{20_{D}}-16.2^{\circ}\left(\mathrm{c} 0.23, \mathrm{CHCl}_{3}\right)$; IR (CHCl_{3}) $v_{\text {max }} 3604$, 3492, $1386 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.86$ (3H, s, H-15), 1.30 (3H, $\mathrm{s}, \mathrm{H}-12), 1.85(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=12.0\right.$ $\mathrm{Hz}, \mathrm{H}-7), 2.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.4,3.1 \mathrm{~Hz}, \mathrm{H}-5), 2.40(1 \mathrm{H}$, $\left.\mathrm{br} \mathrm{s}, \mathrm{W}_{\mathrm{h} / 2}=5.7 \mathrm{~Hz},-\mathrm{OH}\right), 2.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}$, H-13a), 2.57 (1H, d, J $=4.3 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{a}$), 2.81 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=4.5 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b}), 2.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.3 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{~b}), 3.36$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,2.8 \mathrm{~Hz}, \mathrm{H}-3$); ${ }^{13} \mathrm{C}$ NMR $\delta 15.97$ (q, C-15), 20.44 (t), 20.58 (t$), 22.28$ ($\mathrm{q}, \mathrm{C}-12$), 27.28 ($\mathrm{t}, \mathrm{C}-2$), 34.84 (d, C-5), 35.03 (t, C-1), 35.24 (d, C-7), 35.64 ($\mathrm{s}, \mathrm{C}-10$), 37.79 (t, C-9), 49.94 (t, C-14), 52.90 ($\mathrm{t}, \mathrm{C}-13$), 58.65 (s , C-11), 62.01 (s, C-4), 73.13 (d, C-3); anal. C 70.70\%, H 9.55%, calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}, \mathrm{C} 71.39 \%$, H 9.59%.
$\mathbf{7} \beta \mathrm{H}$-E udesmane-3 $\alpha, 4 \alpha$,11-triol (25). A solution of 24 ($146 \mathrm{mg}, 0.58 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (17 mL) was slowly added into $\mathrm{LiAlH}_{4}(53 \mathrm{mg}, 1.40 \mathrm{mmol})$ under stirring. Stirring was continued at room temperature for 3 h after completion of addition of 24, and the reaction mixture was poured into a saturated aqueous solution of NaCl (50 mL), stirred for 30 min , and filtered through Celite. The filtrate was worked up as usual to give a pale yellow crude product (168 mg) as a crystalline material, which
was chromatographed over Si gel [10 g, 2.2 cm i.d., EtOAc-hexane (1:1)].

The major fraction gave $\mathbf{2 5}$ ($144 \mathrm{mg}, 97 \%$) as colorless micro crystals: $\mathrm{mp} 93^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-53.0^{\circ}\left(\mathrm{c} 0.91, \mathrm{CHCl}_{3}\right.$); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3620,3436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.93(3 \mathrm{H}$, s, H-15), 1.11 (3H, s, H-14), 1.29 (6H, s, H-12, H-13), $2.55\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{W}_{\mathrm{h} / 2}=9.2 \mathrm{~Hz},-\mathrm{OH}\right), 2.65\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{W}_{\mathrm{h} / 2}\right.$ $=11.0 \mathrm{~Hz},-\mathrm{OH}), 3.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,2.8 \mathrm{~Hz}, \mathrm{H}-3)$; ${ }^{13} \mathrm{C}$ NMR $\delta 18.19$ (q, C-15), 20.33 (t), 20.90 ($\mathrm{q}, \mathrm{C}-14$), 21.42 (t$), 25.92$ (t$), 29.45$ (q, C-12), 29.96 ($q, \mathrm{C}-13$), 33.86 ($\mathrm{s}, \mathrm{C}-10$), 34.10 (t, C-1), 41.35 (t, C-9), 41.79 (d, C-5), 42.07 (d, C-7), 73.72 (s, C-11), 74.73 (d, C-3), 74.89 (s, C-4); anal. $\mathrm{C} 69.91 \%, \mathrm{H} 10.92 \%$, calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3}, \mathrm{C}$ 70.27\%, H 11.01\%.
$\mathbf{7} \beta \mathrm{H}$-3 α-(Mesyloxy)eudesmane-4 α,11-diol (26). To a stirred solution of $\mathbf{2 5}(78 \mathrm{mg}, 0.30 \mathrm{mmol})$ in pyridine (2 mL) was added methanesulfonyl chloride ($46 \mu \mathrm{~L}, 0.60$ mmol) at $0^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 30 min and then at room temperature for 3 h and worked up as usual to give $\mathbf{2 6}$ ($76 \mathrm{mg}, 74 \%$) as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 3600,3460,1348,1174$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 0.96$ (3H, s, H-15), 1.16 (3H, s, H-14), $1.28(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 3.09\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OSO}_{2} \mathrm{Me}\right), 4.58(1 \mathrm{H}$, dd, J = 3.0, 3.0 Hz, H-3).
$\mathbf{7} \boldsymbol{\beta} \mathbf{H}-$ Eudesm-2-ene-4 α,11-diol (27). A mixture of 26 ($33 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\operatorname{LiBr}(17 \mathrm{mg}, 0.020 \mathrm{mmol})$, and $\mathrm{Li}_{2} \mathrm{CO}_{3}(22 \mathrm{mg}, 0.30 \mathrm{mmol})$ in DMF (5 mL) was stirred at $140{ }^{\circ} \mathrm{C}$ for 3 h , cooled, and filtered under reduced pressure. The filtrate was worked up as usual to give a pale yellow oil (28 mg) that was chromatographed over Si gel ($1.4 \mathrm{~g}, 1.2 \mathrm{~cm}$ i.d.) to give 27 ($15 \mathrm{mg}, 59 \%$) as colorless micro crystals: mp $115^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-8.4^{\circ}$ (c 0.18 , $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 3608,3432 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} N M R \delta$ 0.91 (3H, s, H-15), 1.14 (3H, s, H-14), 1.28 (3H, s, H-12), 1.29 (3H, s, H-13), 5.52 (1 H , dd, J $=10.2,2.3 \mathrm{~Hz}, \mathrm{H}-3$), $5.60(1 \mathrm{H}$, ddd, J $=10.2,5.0,1.7 \mathrm{~Hz}, \mathrm{H}-2)$; ${ }^{13} \mathrm{C}$ NMR δ 19.26 (q, C-15), 21.32 (t), 21.40 (t$), 22.67$ (q, C-14), 29.38 (q, C-12), 29.73 (q, C-13), 33.49 (s, C-10), 39.13 (t, C-9), 41.59 (t, C-1), 42.40 (d, C-7), 47.01 (d, C-5), 71.63 (s, C-4), 74.63 (s, C-11), 125.76 (d, C-2), 134.90 (d, C-3); anal. C 74.90\%, H 11.16\%, calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}, \mathrm{C}$ 75.58%, H 11.00\%.
(-)-7 $\beta \mathrm{H}-$ E udesmane-4 α,11-diol (2). A mixture of 27 (49.9 mg, 0.21 mmol) and $3 \% \mathrm{Pd}-\mathrm{SrCO}_{3}(34 \mathrm{mg})$ in EtOAc was shaken under 1 atm of H_{2} for 3 h , filtered, and concentrated to give a crystalline crude product that was recrystallized from pentane to give 2 (49.8 mg , 100%) as col orless needles: mp $105{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-2.2^{\circ}$ (C $\left.0.723, \mathrm{CHCl}_{3}\right),-18.1^{\circ}\left(\mathrm{c} 0.072, \mathrm{CHCl}_{3}\right),-58.8^{\circ}(\mathrm{c} 0.017$, $\left.\mathrm{CHCl}_{3}\right),[\alpha]^{29} \mathrm{D}-66.7^{\circ}\left(\mathrm{c} 0.015, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }}$ 3616, $3412 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 0.92(3 \mathrm{H}, \mathrm{s}$, H-15), 1.11 (3H, s, H-14), 1.28 (3H, s, H-12), 1.29 (3H, $\mathrm{s}, \mathrm{H}-13), 1.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.7,3.7 \mathrm{~Hz}, \mathrm{H}-5), 2.09(1 \mathrm{H}$, br d, J $=13.7 \mathrm{~Hz}, \mathrm{H}-6 e q)$) ${ }^{13} \mathrm{C}$ NMR (c $0.1 \mathrm{~mol} / \mathrm{L}$) $\delta 18.72$ (q, C-15), 20.27 (t), 20.78 (t, C-6), 21.29 (t), 22.03 (q, C-14), 29.64 ($q, C-12$), 29.75 ($q, C-13$), 34.33 ($s, C-10$), 41.67 (t$), 41.67$ (t$), 41.95$ (d, C-7), 43.70 (t$), 49.14$ (d, C-5), 72.62 (s, C-4), 74.76 ($\mathrm{s}, \mathrm{C}-11$); anal. C $74.42 \%, \mathrm{H}$ 11.17\%, calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}$, C 74.95%, H 11.74\%.
ent-7 $\beta \mathrm{H}$-5 $\boldsymbol{\beta}$-Hydroxyeudesm-11-en-3-one (ent-3). ${ }^{8}$ Robinson annulation of (+)-dihydrocarvone with ethyl vinyl ketone in the presence of KOH in the mixture of EtOH and $\mathrm{Et}_{2} \mathrm{O}$ gave ent-3 as colorless crystals: mp $97{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+40.7^{\circ}$ ($\mathrm{c} 4.03, \mathrm{CHCl}_{3}$); anal. $\mathrm{C} 75.94 \%, \mathrm{H}$
10.35%, calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$, C 76.22%, H 10.24%; IR (CHCl_{3}), ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of ent-3 identical with those of 3.
ent-7 $\mathbf{\beta} \mathbf{H}-4,11-E$ udesmadien-3-one (ent-4). ${ }^{8,9}$ Treatment of ent-3 with 6 M HCl in EtOH gave ent-4 (81\%) as colorless oil: $[\alpha]^{20} \mathrm{D}-180.9^{\circ}$ (($4.13, \mathrm{CHCl}_{3}$); HREIMS $\mathrm{m} / \mathrm{z} 218.1677$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O} 218.1671$); IR (neat), ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}$-NMR spectra of ent-4 identical with those of 4.
ent-7 $\boldsymbol{\beta} \mathbf{H}$-Eudesm-11-en-3-one (ent-5). Birch reduction of ent- 4 by the anal ogous method employed in the preparation of 5 from $\mathbf{4}$ gave ent-5 (86\%) as colorless plates: $\mathrm{mp} 37^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-13.3^{\circ}$ (c $4.26, \mathrm{CHCl}_{3}$); HREIMS m/z 220.1808 (calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$ 220.1827); anal. C $81.49 \%, \mathrm{H} 10.91 \%$, calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}, \mathrm{C} 81.76 \%, \mathrm{H}$ 10.98%; IR (CHCl_{3}), ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of ent-5 identical with those of 5 .
ent-7 $\beta \mathrm{H}$-Eudesm-11-en-3 α-ol (ent-6) and ent-7 $\beta \mathrm{H}-$ Eudesm-11-en-3 β-ol (ent-7). Reduction of ent-5 with NaBH_{4} by the analogous method employed in the preparation of $\mathbf{6}$ and $\mathbf{7}$ from 5 gave ent-6 (23\%) and ent-7 (74\%) after separation by HPLC [C, EtOAchexane ($1: 9$), $3 \mathrm{~mL} / \mathrm{min}$].
ent-6: colorless oil; $[\alpha]^{20} \mathrm{D}+18.5^{\circ}$ (c $3.06, \mathrm{CHCl}_{3}$); HREIMS m/z 222.1957 (calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$ 222.1984); IR (neat), ${ }^{1} \mathrm{H}-$ NMR , and ${ }^{13} \mathrm{C}-$ NMR spectra ent-6 identical with those of 6 .
ent-7: colorless micro crystals; mp $53{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}$ -19.9 ${ }^{\circ}$ (c 3.87, CHCl_{3}); HREIMS m/z 222.1993 (calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$ 222.1984); anal. C $80.56 \%, \mathrm{H} 12.12 \%$, calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}, \mathrm{C} 81.02 \%, \mathrm{H} 11.79 \%$; IR (CHCl_{3}), ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}$-NMR spectra of ent-7 identical with those of 7 .
ent-7 $\beta \mathbf{H}$-E udesm-11-en-3 α-ol Methanesulfonate (ent-8). Mesylation of ent-6 with methanesulfonyl chloride in pyridine by the analogous method employed in the preparation of 8 from 6 gave ent-8 (100\%) as colorless oil. The IR (neat) and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of ent-8 were identical with those of 8.
ent- $\mathbf{\beta} \boldsymbol{\beta} \mathrm{H}$-E udesm-11-en-3 $\boldsymbol{\beta}$-ol Methanesulfonate (ent-9). Mesylation of ent-7 with methanesulfonyl chloride in pyridine by the analogous method employed in the preparation of $\mathbf{9}$ from $\mathbf{7}$ gave ent-9 (97\%) as colorless oil. The IR (neat) and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of ent-9 were identical with those of $\mathbf{9}$.
ent-7 $\beta \mathbf{H}$-E udesma-3,11-diene (ent-10). The methanesulfonates ent-8 and ent-9 were treated in the same way as described in the preparation of $\mathbf{1 0}$ from $\mathbf{8}$ gave 1:8 and 1:6 mixtures of ent-11 and ent-10 in 74\% and 89% yields, respectively. The IR $\left(\mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of the major component of this mixture, ent-10 were identical with those of $\mathbf{1 0}$.
ent-7 $\beta \mathrm{H}$-E udesm-11-en-3 $\alpha, 4 \alpha$-epoxide (ent-16). Epoxidation of ent-10 with 1 molar equivalent m-CPBA gave ent-16 (71\%) accompanied by diepoxide ent-12 (6\%) by the analogous method employed in the preparation of $\mathbf{1 6}$ from $\mathbf{1 0}$.
ent-16: colorless oil; $[\alpha]^{20} \mathrm{D}-25.6^{\circ}$ (c 4.11, CHCl_{3}); HREIMS m/z 220.1848 (calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$ 220.1827); IR (neat), ${ }^{1} \mathrm{H}$ - NMR, and ${ }^{13} \mathrm{C}$-NMR spectra of ent-16 identical with those of 16.
ent-12: colorless oil; ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra identical with those of 12.
ent-7 $\beta \mathrm{H}$-Eudesma-4(14),11-dien-3 α-ol (ent-17). Treatment of ent-16 with $\mathrm{Al}(\mathrm{i}-\mathrm{PrO})_{3}$ by the analogous
method employed in the preparation of $\mathbf{1 7}$ from $\mathbf{1 6}$ gave ent-17 (61\%) and the rearranged product ent-18 (14\%).
ent-17: colorless oil; $[\alpha]^{20} \mathrm{D}-9.6^{\circ}$ (c 4.33, CHCl_{3}); HREIMS m/z 220.1797 (calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$ 220.1827); IR (neat), ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of ent-17 identical with those of 17.
ent-18: colorless needles; mp $43^{\circ} \mathrm{C}$; $[\alpha]^{20} \mathrm{D}+0.6^{\circ}$ (C 2.31, CHCl_{3}); anal. C 80.66%, H 11.50%, calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}, \mathrm{C} 81.02 \%$, H 11.79\%; IR (CHCl_{3}), ${ }^{1 \mathrm{H}} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-$ NMR spectra of ent-18 identical with those of 18.
ent-7 $\beta \mathrm{H}-4 \alpha, 14-$ Epoxyeudesm-11-en-3 α-ol (ent-19). Sharpless oxidation of ent-17 with TBHP in the presence of $\mathrm{VO}\left(\mathrm{acac}_{2}\right)_{2}$ by the analogous method employed in the preparation of 19 from $\mathbf{1 7}$ gave ent-19 (80\%) as colorless needles: $\mathrm{mp} 79{ }^{\circ} \mathrm{C}$; $[\alpha]^{20_{\mathrm{D}}}+28.6^{\circ}$ (c 3,79 , CHCl_{3}); anal. C 74.77%, $\mathrm{H} 10.50 \%$, calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$, C 76.22%, H 10.24%; IR (CHCl_{3}), ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-$ NMR spectra identical with those of 19.
ent-7 $\beta \mathrm{H}-4 \alpha, 14 ; 11 \xi, 12$-Diepoxyeudesman-3 α-ol (ent24a and ent-24b). Epoxidation of ent-19 with m-CPBA by the analogous method employed in the preparation of 24a and 24b from 19 gave diastereomeric isomers at C-11, ent-24a and ent-24b (100\%), which were separated by HPLC.
ent-24a: colorless prisms; $\mathrm{mp} 74^{\circ} \mathrm{C}$; $[\alpha]^{20} \mathrm{D}+57.8^{\circ}$ (c 2.40, CHCl_{3}); anal. C $70.81 \%, \mathrm{H} 9.62 \%$, calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}, \mathrm{C} 71.39 \%$, $\mathrm{H} 9.59 \%$; IR (CHCl_{3}), ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-$ NMR spectra of ent-24a identical with those of 24a.
ent-24b: colorless prisms; mp $93^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}+26.3^{\circ}$ (c 2.69, CHCl_{3}); anal. C $70.56 \%, \mathrm{H} 9.51 \%$, calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}, \mathrm{C} 71.39 \%, \mathrm{H} 9.59 \%$; IR $\left(\mathrm{CHCl}_{3}\right)$, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-$ NMR spectra of ent-24b identical with those of $\mathbf{2 4 b}$.
ent-7 $\beta \mathrm{H}$-E udesmane-3 $\alpha, 4 \alpha, 11$-triol (ent-25). Reduction of the mixture of ent-24a and ent-24b with LiAlH_{4} by the anal ogous method in the preparation of 25 from 24 gave ent-25 (97\%) as colorless micro crystals: $\mathrm{mp} 93^{\circ} \mathrm{C}$; $[\alpha]^{20} \mathrm{D}+53.3^{\circ}$ (c $3.79, \mathrm{CHCl}_{3}$); anal. C 68.16%, H 11.02%, calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$, C 67.88%, H 11.02\%; IR (CHCl_{3}), ${ }^{1 \mathrm{H}}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of ent-25 identical with those of $\mathbf{2 5}$.
ent-7 $\beta \mathrm{H}$-3 α-(Mesyloxy)eudesmane-4 α,11-diol (ent26). Treatment of ent-25 with methanesulfonyl chloride by the analogous method employed in the preparation of $\mathbf{2 6}$ from $\mathbf{2 5}$ gave ent-26 (77\%) as a col orless oil. The IR $\left(\mathrm{CHCl}_{3}\right)$ and ${ }^{1} \mathrm{H}-$ NMR spectra of ent-26 were identical with those of 26.
ent-7pH-Eudesm-2-ene-4 $\alpha, 11$-diol (ent-27). A mixture of ent-26 ($41 \mathrm{mg}, 0.12 \mathrm{mmol}$), $\mathrm{LiBr}(21 \mathrm{mg}, 0.24$ $\mathrm{mmol})$, and $\mathrm{Li}_{2} \mathrm{CO}_{3}(22 \mathrm{mg}, 0.37 \mathrm{mmol})$ in DMF (5 mL) was stirred at $110{ }^{\circ} \mathrm{C}$ for 2.5 h and treated as usual manner to give a pale yellow oil that was separated by HPLC [C, EtOAc-hexane (1:1), $3.0 \mathrm{~mL} / \mathrm{min}$]. The first peak ($t_{R} 3.6 \mathrm{~min}$) gave ent-27 ($14 \mathrm{mg}, 44 \%$) as col orless micro crystals: $\mathrm{mp} 111{ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}+8.8^{\circ}$ (c $0.07, \mathrm{CHCl}_{3}$); anal. C 74.76%, H 10.72%, calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$, C 75.58%, H 11.00%; IR $\left(\mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of ent-27 identical with those of $\mathbf{2 7}$. The second peak ($t_{R} 8.8 \mathrm{~min}$) gave recovered ent-26 ($19 \mathrm{mg}, 47 \%$).
ent-7 $\beta \mathbf{H}$-E udesmane-4 $\alpha, 11$-diol (ent-2). Catalytic hydrogenation of ent-27 ($8.0 \mathrm{mg}, 0.034 \mathrm{mmol}$) by the anal ogous procedure employed in the preparation of $\mathbf{2}$ from 27 gave ent-2 ($8 \mathrm{mg}, 100 \%$) as colorless needles: $104{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}+72.7^{\circ}\left(\mathrm{c} 0.02, \mathrm{CHCl}_{3}\right),[\alpha]^{29} \mathrm{D}+73.3^{\circ}$ (c
$0.015, \mathrm{CHCl}_{3}$); anal. $\mathrm{C} 74.76 \%, \mathrm{H} 11.52 \%$, calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}, \mathrm{C} 74.95 \%$, $\mathrm{H} 11.74 \%$; IR (CHCl_{3}), ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra identical with those of $\mathbf{2}$.

Acknowledgment. We thank Mr. T. Sato and Mrs. H. Ando of the Instrument Analysis Center for Chemistry, Tohoku University, for EIMS, HREIMS, and microanalyses.

References and Notes

(1) Ahmad, V. U.; Farooqui, T. A.; Fizza, K. J . Nat. Prod. 1992, 55, 730-735.
(2) Ando, M.; Arai, K.; I sogai, K.J . Nat. Prod. 1994, 57, 1189-1199.
(3) Hortmann, A. G.; M artinelli, J. E.; Wang, Y.-S. J. Org. Chem. 1969, 34, 732-736, and references therein.
(4) McQuillin, F. J. J. Chem. Soc. 1955, 528-534.
(5) We noticed previously that this procedure is convenient for dehydration of the hydroxyl group of acid- or base-sensitive compounds and applied it to the synthesis of (+)-arubusculin A and its related compounds; Ando, M.; Isogai, K.; Azami, H.; Hirata, N.; Yanagi, Y. J . Nat. Prod. 1991, 54, 1017-1024.
(6) We previously reported that the mesylates of 3α - and 3β -hydroxy-5 $\beta \mathrm{H}$-eudesmane derivatives gave analogous results; see Ando et al. ${ }^{2}$
(7) Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136-6137.
(8) Howe, R.; McQuillin, F. J. J. Chem. Soc. 1955, 2423-2427.
(9) Marshall, J. A.; Pike, M. T. J. Org. Chem. 1968, 33, 435-437, and references therein.

NP9702906

[^0]: * To whom correcspondence should be addressed. Phone:+81-25-262-7326. FAX: +81-25-263-3174 or +81-25-262-0785. E-mail: mando@eng.niigata-u.ac.jp.
 ${ }^{\dagger}$ Graduate School of Science and Technology, Niigata University.
 ${ }^{\otimes}$ Abstract published in AdvanceACS Abstracts, November 15, 1997.

